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Abstract

Background: The diagnosis of posttraumatic stress disorder (PTSD) is usually based

on clinical interviews or self‐report measures. Both approaches are subject to under‐
and over‐reporting of symptoms. An objective test is lacking. We have developed a

classifier of PTSD based on objective speech‐marker features that discriminate PTSD

cases from controls.

Methods: Speech samples were obtained from warzone‐exposed veterans, 52 cases

with PTSD and 77 controls, assessed with the Clinician‐Administered PTSD Scale.

Individuals with major depressive disorder (MDD) were excluded. Audio recordings of

clinical interviews were used to obtain 40,526 speech features which were input to a

random forest (RF) algorithm.

Results: The selected RF used 18 speech features and the receiver operating

characteristic curve had an area under the curve (AUC) of 0.954. At a probability of

PTSD cut point of 0.423, Youden's index was 0.787, and overall correct classification

rate was 89.1%. The probability of PTSD was higher for markers that indicated

slower, more monotonous speech, less change in tonality, and less activation.

Depression symptoms, alcohol use disorder, and TBI did not meet statistical tests to

be considered confounders.

Conclusions: This study demonstrates that a speech‐based algorithm can objectively

differentiate PTSD cases from controls. The RF classifier had a high AUC. Further

validation in an independent sample and appraisal of the classifier to identify those

with MDD only compared with those with PTSD comorbid with MDD is required.

K E YWORD S

biomarkers, diagnostics, feature extraction, military, posttraumatic stress disorder, speech‐
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1 | INTRODUCTION

Posttraumatic stress disorder (PTSD) is frequently associated with

functional impairment including relationship conflicts (Taft, Watkins,

Stafford, Street, & Monson, 2011), reduced academic attainment

(Bachrach & Read, 2012; Kessler, Foster, Saunders, & Stang, 1995),
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substance abuse (Mills, Teesson, Ross, & Peters, 2006; Pietrzak,

Goldstein, Southwick, & Grant, 2011), unemployment (Sripada et al.,

2016), and adverse health outcomes (Boscarino, 2008; O'donovan,

Slavich, Epel, & Neylan, 2013; Roberts et al., 2015; Zen, Whooley,

Zhao, & Cohen, 2012). The ability to accurately screen for and

diagnose PTSD, however, remains challenging (Shalev, Liberzon, &

Marmar, 2017). There are numerous self‐report screening tools

(Sijbrandij et al., 2013) and several clinician‐administered interview

protocols (Blake et al., 1995; Foa & Tolin, 2000; Weathers et al.,

2017). The gold‐standard for diagnosing PTSD is the Clinician‐
Administered PTSD Scale (CAPS; Blake et al., 1995). The CAPS is a

structured clinical interview for assessing the frequency and severity

of PTSD symptoms and related functioning impairments. The CAPS

has been shown to have 79% overall agreement with a clinician's

diagnosis, with the sensitivity of 0.74 and specificity 0.84 (Hovens

et al., 1994).

The assessment of PTSD with a structured interview is based in part

on the subjective complaints of the patient and interpretations of the

clinician. This process is subject to a number of biases that may distort

the accuracy of the diagnosis, including cultural and racial biases

(Snowden, 2003), distortions in memory (Donaldson, Corrigan, & Kohn,

2000; Ely, Graber, & Croskerry, 2011), or financial and social incentives

(Hall & Hall, 2006). Additionally, because of stigma, patients vary in their

willingness to candidly discuss traumatic experiences, symptoms and

functioning. Moreover, the interview requires a lengthy visit to a

clinician's office, which some patients may be unwilling or unable to do.

For these reasons, there is an imperative to develop objective measures

for screening and diagnosing psychiatric disorders (Kapur, Phillips, &

Insel, 2012; Singh & Rose, 2009), including PTSD (Lehrner & Yehuda,

2014; Shalev et al., 2017).

Multiple studies have been initiated to identify biological markers

for PTSD including alterations in neural structures and circuit

functioning, genomics, neurochemistry, immune functioning, and psy-

chophysiology (Lehrner & Yehuda, 2014; Shalev et al., 2017; Zoladz &

Diamond, 2013). Despite these advances, problems in accuracy, cost,

and patient burden preclude routine use in clinical practice.

There has been growing interest in speech‐based techniques to

screen for psychiatric disorders (Bedi et al., 2014, 2015; Grünerbl et al.,

2015; Karam et al., 2014; Muaremi, Gravenhorst, Grünerbl, Arnrich, &

Tröster, 2014; Osmani et al., 2015; Vanello et al., 2012). Speech is an

attractive candidate, as it can be measured at low‐cost, remotely,

noninvasively, and naturalistically. Clinicians have long observed that

individuals suffering from psychiatric disorders display changes in

speech (Newman & Mather, 1938) and routinely use impressions of

voice quality as an element of mental status examination, including

“pressured” speech in bipolar disorder or “monotone,” “lifeless,” and

“metallic” speech in depression (Hall, Harrigan, & Rosenthal, 1995;

Moses, 1954; Sobin & Sackeim, 1997). More recently, automated

techniques to analyze speech have been able to classify mood disorders

on a number of speech features. For example, combining prosodic, voice

quality, spectral, and glottal features for automated speech classification

has shown encouraging sensitivity and specificity (van den Broek, van

der Sluis & Dijkstra, 2010).

Less is known about speech alterations in PTSD. Van den Broek, Van

der Sluis, and Dijkstra (2010) asked individuals with PTSD to generate

two affective narratives and found that 65 parameters of speech

accounted for 69–83% of the variance of stress symptoms. Scherer et al.

found that in response to positive, negative, and neutral interview

prompts, those with PTSD exhibited more tense voice features (Scherer,

Stratou, Gratch, & Morency, 2013) and decreased vowel space (Scherer,

Lucas, Gratch, Rizzo, & Morency, 2016). Recent work applying multiview

learning algorithms demonstrated that diagnostic classification of PTSD

increased by 20–37% using two speech classifiers (Zhuang, Rozgić,

Crystal, & Marx, 2014). Although promising, these findings are limited

due to reliance on self‐report measures rather than validated interviews

to classify PTSD (Scherer et al., 2013, 2016), samples with major

depressive disorder (MDD) comorbidity (Scherer et al., 2013, 2016),

limited use of control groups (van den Broek, van der Sluis & Dijkstra,

2010), and small samples (Scherer et al., 2013, 2016; van den Broek, van

der Sluis & Dijkstra, 2010).

This is the first study to identify features of speech that

differentiate PTSD cases from controls in an age‐ and gender‐
matched sample of veterans excluding current MDD.

2 | METHODS

2.1 | Participants

Participants included 129 American warzone‐exposed male Iraq and

Afghanistan veterans who gave written informed consent. All

procedures were approved by the Institutional Review Board of

NYU Langone School of Medicine and conform to the US Federal

Policy for the Protection of Human Rights. Participants were

assessed for PTSD with the Clinician Administered PTSD Scale

(CAPS‐IV) by a clinical psychologist. Participants in the PTSD group

met diagnostic criteria for PTSD based on DSM IV‐TR criteria (Blake

et al., 1990). Controls were age‐ and gender‐matched warzone‐
exposed veterans who did not meet criteria for current or life-

time PTSD.

Participants were excluded from the study if they met DSM 5

criteria, assessed by the Structured Clinical Interview for DSM

Diagnosis (SCID‐5), severe drug use in the past 6 months, lifetime

history of any psychiatric disorder with psychotic features, bipolar I &

II disorder, current MDD, depression due to a general medical

condition (GMC), current exposure to recurrent trauma or exposure

to a traumatic event within the past month, prominent suicidal

ideation, homicidal ideation, suicide attempt in the past 3 months,

history of open‐head injury, illness affecting central nervous system

(CNS) functioning, cardiovascular disease, major medical illness, and

starting psychotropic medications in the past month.

2.2 | Procedure

2.2.1 | Speech feature extraction

The audio of each CAPS interview was recorded in two channels,

using separate microphones for the interviewer and participant. A
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rich set of speech features was extracted from the participant's

recording using the following steps.

2.2.2 | Audio quality control

This step was manual, targeting the selection of only good audio

samples (clear and audible speech in the signal) to avoid noise in the

feature extraction process. During this step the participant's audio

channel was also manually marked.

2.2.3 | Audio segmentation

This step identified the participant's speech regions, excluding the

interviewer who was often audible in the participant microphone

channel. Very short duration (e.g., “yes/no”) participant segments

were also removed, resulting in 1–120min of clean speech per

participant (mean = 35min/speaker). This step could also be done

manually, but due to cost and time constraints we applied SRI's

automatic Voice Activity Detector (VAD; open source alternatives

can also be used, e.g., https://chromium.googlesource.com/external/

webrtc/ + /master/common_audio/vad/). VAD was run on the clin-

ician and participant audio channels independently to mark the

locations of speech for both speakers. Only the participant channel

speech regions with higher VAD score than the corresponding

clinician channel segments were retained, avoiding segments that

included interviewer's voice. In the following, we refer to these

automatically identified participant speech regions, separated by long

pauses or speech from the interviewer, as speech “spurts.”

2.2.4 | Extraction of frame level features

A frame is a short sliding window of speech, typically 5–25ms,

depending on feature type. The frame‐level features included:

spectral (i.e., Mel‐Frequency Cepstral Coefficients [MFCCs]), linear

predictive coding (LPC), noise‐robust spectral (i.e., DOCC and

RASTA), prosodic (chroma features, pitch, voicing, and correlation),

time‐based (zero crossing, RMS energy, and L1‐norm), spectro‐
temporal (LTSV, MFCC, and RASTA derivatives), articulatory,

temporal, and machine‐learning‐based (autoencoders learned from

prior speaker databases). The features were extracted using SRI's

speech feature extraction tools, but there are also open source

alternatives that can be used for the same feature types (e.g., https://

www.audeering.com/opensmile/).

2.2.5 | Computation of spurt‐level features

These were computed based on frame‐level features for every spurt.

They included: (a) statistics: mean, variance, kurtosis skewness,

variation from mean, percentiles, range, and slope, (b) locational

information: absolute and relative distances from the beginning of

the spurt for the occurrence of important feature values (min, max,

5% of max, 50% of max, 95% of max) and (c) durational information:

distances between the occurrences of important feature values, for

example, the distance between reaching 5% and 50% of the feature

max value within the spurt.

2.2.6 | Computation of speaker‐level features

The final feature vector was extracted by taking statistics of the

spurt level features for each speaker: mean variance, kurtosis,

skewness, variation from mean, various percentiles, interquartile

range, and slope.

These features aim to capture the nuances, variability, and

behavior, both short‐term and long‐term, of a rich set of low‐level
speech features over the entire session focusing only on the patient

speech segments of the conversation. A total of 40,526 features were

computed at the speaker level and were used for the feature

selection and model building.

2.3 | Statistical analysis

2.3.1 | Comparing the two groups on demographic
variables

For categorical variables, a χ2 (or Fisher's exact test when at least

one cell count had five or less individuals) and for continuous

variables, Wilcoxon's rank sum tests were used.

2.3.2 | The random forest (RF) probabilistic
classifier

A RF algorithm was used to build a classifier function using speech

markers to predict PTSD. It is an algorithm (Breiman, Friedman, Olshen,

& Stone, 1984; Malley, Kruppa, Dasgupta, Malley, & Ziegler, 2012)

based on multiple classification and regression trees (CART; Strobl,

Malley, & Tutz, 2009) yielding a probability estimate of membership in a

target prediction class based on marker values. CART grows a decision

tree whose hierarchical nodes are each based on a cut‐point split of a
predictor found by an exhaustive search to minimize misclassification

error. The process continues recursively until a tree is grown with nodes

that contain members from only one group. This tree is pruned to a set

of nodes for which little is gained from further splits in improving

misclassification error. An estimate of the probability of membership in

the target group of an individual in a terminal node is given by the

fraction of members in the target group who are in the node. RF makes

use of an ensemble of CART decision trees for prediction which acts to

decrease the variance of the predictions and the inherent potential of

over‐fitting of a single decision tree. Bootstrap samples of subjects can

be used to grow a RF of trees. Data on the “out‐of‐bag” (OOB) subjects

in each sample, consisting of approximately one‐third of the full sample

whose data were not used to grow the particular tree, are used to

obtain predictions of target class membership. Features of the OOB

subjects are scored and the estimate of the probability of being in the

target class is the fraction of the target class in the terminal node into

which they fall. The average of these estimates over the trees grown is

the RF estimate of the probability. These are then used to generate a

receiver operator curve and its area under the curve (AUC).
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The importance of a predictor is assessed by randomly permuting

its value in the OOB sample and comparing the differences in

predictive performance (AUCs) between the nonpermuted and

permuted samples. The AUCs are averaged across the entire forest

and ranked on the decrease in AUCs (Breiman et al., 1984). “Shaving”

is a method for reducing the number of predictors based on variable

importance. The variable of least importance is shaved off first and a

new RF is obtained. The procedure is repeated until all variables have

been shaved. The shaved RF with a parsimonious mix of a small

number of features and a large AUC is chosen.

In this study, based on 20,000 bootstrap samples, a RF based on

the 40,759 voice markers was grown and the shaving step began

starting with the 500 variables with the highest importance rankings.

2.3.3 | Testing for confounding

We tested for the possibility that the findings of the relationship

between voice markers and PTSD are confounded by the presence of

comorbidities of traumatic brain injury (TBI), alcohol use disorder

(AUD), and symptoms of depression. Participants who met criteria

for PTSD comorbid with MDD had been excluded. Residual

symptoms of depression were measured by the Beck Depression

Inventory‐II (BDI‐II). A variable was considered to be a confounder if

two null hypotheses related to the prediction of PTSD were rejected

(Pearl, 2009). The null hypotheses to be rejected are (a) that the

potential confounder is not associated with the predictive voice

markers and (b) that the probability of being a PTSD case is not

different when including the confounder in the model from predicting

with the voice markers alone. The confounder hypothesis tests were

run separately for TBI, AUD, the individual symptoms of depression,

and total BDI‐II score. For tests of the first confounder hypothesis, χ2

tests were run on contingency tables of confounder by voice marker.

For tests of the second hypothesis, estimates of the probability of

PTSD obtained from the final RF with and without the inclusion of

the candidate confounder were obtained and compared using

Wilcoxon's rank sum test. If the latter test was statistically

significant, we also required that the difference in AUCs be >0.05.

3 | RESULTS

3.1 | Demographics

The PTSD cases and controls did not differ significantly by age,

ethnicity, educational attainment, number of warzone deployments

or current cannabis, cocaine, hallucinogen, opioid, or stimulant use

(Table 1). The PTSD group had significantly higher total BDI scores,

TBI exposure levels, and current rates of AUD.

3.2 | Properties of the RF

The final shaved RF selected was based on 18 voice markers with an

AUC = 0.954. At a PTSD probability cut point of 0.423, Youden's

index, defined as the sum of sensitivity + specificity − 1, was

0.904 + 0.883 − 1 = 0.787 with an overall correct classification rate

of 89.1%.

3.3 | Voice marker features in the RF

Table 2 lists the 18 features used to build the selected model. Among

individuals with PTSD, Feature 3 reflects speech segments containing

articulators that move more slowly than in controls or contain long

extended vowels, including hesitations (e.g., “uh….”). In addition,

features 1, 2, 4, 5, 11, 15, and 17 contain speech features that were

more monotonous in PTSD cases than in controls. Additionally,

TABLE 1 Participant demographics

Variables

PTSD+ (N = 52) PTSD− (N = 77)

N (%) or
mean (SD)

N (%) or
mean (SD)

Age (years) 31.92 (5.97) 32.47 (7.22)

Number of deployments 1.73 (1.01) 1.79 (1.09)

Race

Asian 2 (3.9%) 5 (6.5%)

Black/African American 9 (17.3%) 6 (7.8%)

White/Caucasian 29 (55.8%) 46 (59.7%)

Hispanic/Latino 11 (21.2%) 14 (18.2%)

Other 1 (1.9%) 6 (7.8%)

Education

Up to 12th grade 1 (1.9%) 0 (0.0%)

High school/GED 18 (34.6%) 17 (22.1%)

2 years college/Associate's

degree

14 (26.9%) 14 (18.2%)

4 years college/Bachelor's

degree

12 (23.1%) 32 (41.6%)

Master's degree 7 (13.5%) 14 (18.2%)

TBI exposure

Yes 19 (36.5%) 5 (6.5%)*

Current alcohol use

Yes 14 (26.9%) 5 (6.5%)*

Current cannabis use

Yes 2 (3.9%) 0 (0%)

Current cocaine use

Yes 0 (0%) 0 (0%)

Current hallucinogen use

Yes 1 (1.9%) 0 (0%)

Current stimulant use

Yes 0 (0%) 0 (0%)

Current opioid use

Yes 0 (0%) 0 (0%)

BDI total scorea 12.54 (8.65) 3.59 (4.15)*

Note. BDI: beck depression inventory; PTSD: posttraumatic stress

disorder.
*Significant p < 0.05.
aBDI total score is the sum of all 21 BDI items.

610 | MARMAR ET AL.



TABLE 2 Feature description for top (ordered by variable importance score) 18 features

Feature # Quality of speech Description of feature computation

1 More monotonous speech (less

varying tonality)

For each spurt we computed the relative time distance between the occurrence of

the low (5%) and median (50%) values for a specific spectral feature (first chroma

FFT coefficient), representing variability in certain speech frequencies. Then we

extracted the lowest value across the speaker spurts.

2 Monotonous speech segments For each spurt we computed the relative time distance between the maximum and

the minimum values for a specific spectral feature (second LMFCC coefficient),

representing variability in certain speech frequencies. Then we extracted the lowest

value across the speaker spurts.

3 Occurrences of slow speech

production

For each speech spurt we estimated the average time it took for the tongue to move

from the minimum to the maximum point. Then we extracted the highest value

(slowest changing spurt) across each speaker's speech.

4 More monotonous speech (less

varying tonality)

For each spurt we computed the relative time distance between the occurrence of

the maximum and the median value for a tonal frequency, representing the tonal

variability on a certain frequency. Then we found the average value across all

spurts.

5 Less bursty (more monotonous) voice For each spurt we computed the kurtosis value for a specific spectral feature (third

Chroma filter) detecting existence of anomalies/outliers in the distribution of

certain speech frequencies. Then we extracted the skewness of this value across the

speaker spurts. This measured whether there were outliers (bursts) in speech

tonality or whether it was mostly within expected ranges during the session.

6 Flatter speech For each spurt we computed the normalized variance of a specific spectral feature

(11th LMFCC coefficient). Then we computed the kurtosis (consistency) across each

speaker's spurts.

7 Less animated speech For each spurt we computed the skewness for a specific spectral feature (11th

LMFCC coefficient) which represented the symmetry of the distribution (found if

there was an outlier values). Then we extracted the lowest value across the speaker

spurts. It examined the least varying spurt, which may have contained single vowel

sounds.

8 Speech segments with very low

activation

For each spurt we computed the relative time distance between the occurrence of

the minimum and the maximum value for a specific spectral feature (11th LMFCC

coefficient) representing variability in certain speech frequencies. Then we extract

the lowest value across the speaker spurts

9 Flatter speech in terms of energy

variation

For each spurt we computed the highest tonal energy for a certain frequency range

(chroma FFT ninth coefficient). Then we computed the variability of that energy

across all spurts.

10 Flat tone in speech For each spurt we computed the highest tonal energy for a certain frequency range

(chroma FFT th coefficient). As for feature 9 but take the 95th% across all spurts.

11 More monotonous speech For each spurt we computed a tonal frequency (zeroth chroma FFT coefficient) with

the highest value across all spurts.

12 Flatter speech in terms of energy

variation

Similar to feature 6, but examined the 10th LMFCC coefficient.

13 Less activated speech For each spurt we computed the skewness of a specific spectrogram frequency range

and then we find the minimum across all spurts. It measured the flatness of the

spectrogram for that frequency range.

14 Slow speech production or long

hesitations

For each spurt we estimated the kurtosis of the position of an articulator. Then we

extracted the highest value (flattest spurt) across the speaker spurts. Similar to

feature 3, it was examining the most consistently articulated spurt

15 More monotonous speech (less

varying tonality)

For each spurt we get the range of values for a specific spectral features (fourth

Chroma filter) and compute the deviation of the range across all spurts. This

indicates how variable is the range of tonality across spurts

16 Flatter speech in terms of energy

variation

For each spurt we computed the relative time distance between the occurrence of

the low (5%) and median (50%) value for specific spectral frequencies (low

frequency range), representing how fast the energy changed within that range. Then

we extracted the skewness across the speaker spurts, which showed whether that

energy changed in a consistent manner across all spurts

(Continues)
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features 6, 9, 10, 12, and 16 revealed that individuals with PTSD

were more likely to generate flat speech. Moreover, features 8 and

13 contained speech features indicating less speech activation among

cases. Table 3 displays means, standard deviations (SDs), and

medians of each feature and results of the Wilcoxon test comparing

the distributions of speech markers between groups. All but feature

18 significantly differed between cases and controls.

3.4 | Confounders

BDI symptoms, TBI, and AUD failed to meet statistical criteria

required to confirm that they are confounders. For the tests of

independence of potential confounders with each marker, TBI and

AUD were correlated only with feature 12. BDI symptoms were each

individually correlated with at most two markers. For the second

statistical test, Table 4 shows the results of comparisons of the

probabilities of PTSD and the AUCs of the RFs determined with and

without inclusion of the confounders for BDI total score, TBI, and

AUD as predictors. While estimates of the probability of PTSD

differed between the two models, AUCs were not improved by

including either TBI or alcohol use. In addition, individual BDI

symptom scores did not significantly increase AUCs and the BDI total

score improved AUC by only 1%. Appendix I contains results of the

complete confounder analyses including tests for each BDI symptom.

4 | DISCUSSION

This study demonstrated that by using speech‐based techniques,

male Iraq and Afghanistan veterans with PTSD could be distinguished

from warzone‐exposed veterans without PTSD, neither of whom had

MDD. The findings suggest that by combining frame‐level short‐ and
longer‐duration prosodic features, high accuracy, sensitivity, and

specificity for classifying PTSD can be achieved. The classifier assigns

TABLE 2 (Continued)

Feature # Quality of speech Description of feature computation

17 More monotonous speech in energy For each spurt we compute the 5% value for a certain spectral feature (19th Rasta

coeff.) and compute the deviation of this value across spurts. In captures energy

variability in a certain frequency range

18 Description of speech quality could

not be made

For each spurt we estimated the kurtosis of the position of an articulator. Then we

extracted the highest value (flattest spurt) across the speaker spurts. Similar to

feature 1, it was examining the most consistently articulated spurt

TABLE 3 Summary statistics of 18 voice markers for the PTSD− and the PTSD+ groups

PTSD− PTSD+

Variables Mean Median SD Mean Median SD Wilcoxon's test

Var1 −0.964 −0.973 0.030 −0.982 −0.987 0.024 *

var2 −0.937 −0.942 0.035 −0.965 −0.970 0.022 *

var3 0.936 0.945 0.053 0.967 0.972 0.021 *

var4 −0.065 −0.081 0.084 −0.039 −0.059 0.095 *

var5 409.400 240.187 557.587 1026.070 630.206 1154.760 *

var6 2.682 2.139 2.498 2.862 2.744 0.757 *

var7 −0.959 −0.967 0.038 −0.980 −0.983 0.014 *

var8 0.279 0.269 0.048 0.249 0.250 0.039 *

var9 −1.430 −1.364 0.336 −1.763 −1.657 0.632 *

var10 0.004 0.003 0.002 0.003 0.003 0.001 *

var11 −1.810 −1.883 0.463 −2.316 −2.271 1.120 *

var12 0.929 0.945 0.074 0.940 0.970 0.196 *

var13 355.616 208.173 364.526 897.390 605.526 769.039 *

var14 12.838 12.131 4.279 17.006 15.581 5.937 *

var15 0.00024 0.00018 0.00017 0.00018 0.00015 0.00019 *

var16 0.035 0.164 1.617 −0.131 −0.208 1.883 *

var17 0.0040 0.0037 0.0015 0.0032 0.0031 0.0010 *

var18 0.170 0.169 0.012 0.171 0.169 0.006

Note. PTSD: posttraumatic stress disorder; SD: standard deviation.

*p < 0.05.
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higher probabilities of PTSD to those with features indicating speech

that is slower, more monotonous, and less change in tonality and

activation.

Although the biological mechanisms underlying the link

between these speech features and PTSD were not examined in

this study, previous work has documented that changes to the

automatic nervous system cause disturbances in similar speech‐
based features, such as muscle tension (Scherer, 1986) and

respiratory rate (Kreibig, 2010). Additionally, the neurotransmit-

ter gamma‐amino butyric acid (GABA), which has been linked with

a vulnerability to both depression (Croarkin, Levinson, & Daska-

lakis, 2011) and suicidality (Poulter et al., 2008), has also been

associated with changes in muscle tonality (Croarkin et al., 2011).

Importantly, GABA has been identified as a promising neural

marker of vulnerability and resilience to PTSD, as well as a

therapeutic target (Faye, McGowan, Denny, & David, 2018;

Kelmendi et al., 2016).

Furthermore, changes in muscle tension alter vocal tract

dynamics and constrain articulatory movement. A speaker's level of

depression has been shown to affect prosodic and source features

relevant to articulation (Moore, Clements, Peifer & Weisser, 2008;

Mundt, Vogel, Feltner, & Lenderking, 2012; Quatieri & Malyska,

2012; Scherer et al., 2013; Trevino, Quatieri, & Malyska, 2011) and

has been correlated with reduced tonal range (Breznitz, 1992; Darby,

Simmons, & Berger, 1984; Flint, Black, Campbell‐Taylor, Gailey, &
Levinton, 1993). Findings from the current study indicate that a

reduction in tonal range may also be associated with PTSD, even

among individuals who do not meet criteria for MDD. The reduction

in tonality observed in PTSD is consistent with previous studies

showing decreased formant frequencies in depressed individuals

(Mundt, Snyder, Cannizzaro, Chappie, & Geralts, 2007). These

findings may reflect that tonality (e.g., F0 frequency) is influenced

by factors such as current mood (Ellgring & Scherer, 1996), level of

agitation and anxiety (Alpert, Pouget, & Silva, 2001; Tolkmitt,

Helfrich, Standke, & Scherer, 1982), and personality traits (Yang,

Fairbairn, & Cohn, 2013). Although the exact processes contributing

to the observed reduction in tonality in this study were not tested,

future experimental studies would allow for a more specific under-

standing.

Taken together, these data offer strong preliminary evidence that

speech features can serve as an objective probability classifier for

PTSD. Compared to the more extensive literature linking speech‐
based features and mood disorders (Cummins et al., 2015), there has

been a paucity of research examining speech in PTSD. The few

published studies relied on small sample sizes, assessed PTSD with

self‐report measures, and had high levels of comorbid MDD, making

it difficult to determine whether those features were associated with

PTSD or related psychopathologies.

This is the first study to use a structured clinical interview, the

CAPS 5, both for classifying cases and controls and for the collection

of speech segments for vocal analysis. The ability to use data

collected naturalistically suggests that clinicians may be able to

employ speech‐based analyses to aid in the diagnostic process from

information routinely collected by clinicians. In contrast, the CAPS

interview may have been more stressful for those with PTSD,

compared to controls. It is unclear whether these differences are only

found under conditions of stress or if they would be found in speech

segments generated from less affectively charged content.

There were a number of limitations in the study. While we have

conducted extensive internal cross validation, classifier endorsement

requires a newly recruited external validation sample. We are

confident that TBI and AUD did not confound voice marker findings

in this study because there are a substantial number of subjects with

these disorders in the sample, yielding sufficient power for the

confounder analyses. Nevertheless, larger sample sizes in future

studies would increase confidence in these findings.

Previous work suggested that similar alterations in speech are

associated with affective dysregulation (Breiman, 2001). For exam-

ple, “monotony” and “dullness” have long been associated with a

depressed or sad voice. Kraepelin (1921) described speech quality of

depressed patients as “low voice, slowly, hesitatingly, monotonously,

sometimes stuttering, whispering.” The question of whether the

panel predicts depression rather than PTSD must be considered. To

minimize this possibility, participants with MDD were excluded from

both groups. Further, for symptomatology not meeting criteria for

MDD, we tested the BDI symptoms and did not find them to be

confounders. Clarification of the value of the classifier in clinical

settings requires studies of persons with the diagnosis of MDD

without PTSD and those with comorbid MDD and PTSD.

Given these limitations, we believe that our panel of voice

markers represents a rich, multidimensional set of features which

with further validation holds promise for developing an objective, low

cost, noninvasive, and, given the ubiquity of smart phones, widely

accessible tool for assessing PTSD in veteran, military, and civilian

contexts.
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